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SUMMARY

Analytical and experimental studies have been made of the channel

flow of air through porous resistances inclined at an angle of $0 to

the axis of the chsnnel with the air discharging to the atmosphere.
These studies determine the channel wall shape
form discharge through the porous resistance.

RiT130DUCTION
h

%at would Yieid a uni-

Although flow through a resistsme inclined to the flow directian
is not a new concept, the nmber of applications of this type of flow

● has increased rapidly in recent years. For instance, heat exchangers
employing oblique flow can be built more canpactly and present much less
frontal area than perpendicular-type heat exchangers. Oblique-flow air
dryers have been used for similar reasons. Side air intakes for coolers
on aircraft and various types of intake manifolds are other important
examples of applications of oblique flow. Since the pressure drop through
a porous resistance in turbulent flow varies approximately as the square
of the normal velocity (refs. 1 to 3)} it is seen that in theory the
pressure drop will be less in oblique flow than in perpendicular flow for
the same total flow rate and the same frontal area.

Though it appears that oblique flow possesses many inherent advan-
tages, important difficulties exist in practice. Firstj because the fluid
entering the porous resistance transfers a portion of its original momen-
tmn to the fluid remaining in the channel, there is a strong tendency for
a nonuniform pressure to develop along the screen (refs. 4 and 5). This
in turn results in nonuniform discharge through the resistance, which can
be highly undesirable for applications such as heat exchangers where the
over-all heat transfer would be decreased and hot spots could develop.
The second difficulty is the turning loss experiencedby the fluid as it
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changes its direction to.enter the poroqs resistance,r(refs.6 and 7).
.

This loss can be quite high in the case of large incoming velocities.
b

One method mployed in the past to overcame these difficulties is
the use of turning vanes (ref. 6), which} in general, are difficult to
fabricate and install and do not always remove the difficulties. Another
method of treating the previously mentioned difficulty of nonuniform
pressure distributicm along the porous resistance is ~ shape correctly
the wall of the channel containing the resistance. In””orderto predict
theoretically the wall shape which will give constant pressure along
the resistance and hence uniform discharge through the resistance, it 2

is necessary to know the fraction of momentum tragsferredby the fluid
entering the resistance to the fluid left in the channel. Z!bisfraction
is denotedby the symbol ~.

Several theoretical studies have been made of channel wall shape,
with various restricting assumptions on p. Thus, Keller (ref. 8) and
Van Der Hegge Zijnen (ref. 9) have considered shaping the walls inmani-
fold flowj assuming s = 0, and have found that the cross-sectional area
of the channel must decrease llnearly to zero. Cichelli and Boucher
(ref. 4) assumed p = 1 in obtaining pressure distributions for differ-
ent assumed wall shapes in connection with the problem of designing the
headers on heat exchangers to give uniform flow through the pipes. II

Ktichemannand Weber (ref. 7) have made a study of the optimum contours
of airplane air intake wallsj but their main purpose was to shape the
walls so as to prevent separation and, hence, reduce pressure losses.

*

This report makes a more thorough experimental and analytical study
of shaping the channel wall in order to obtain uniform discharge through
the porous resistance by making the static pressure constant inside the
channel. The analysis is made leaving the value of p undetermined, and
the experiment is made in order to determine the value of 13 and the
validity of the analysis. The partic+ar configuration and flow condi-
tions studied are those which will give a large tendency to nonuniform

flow through the resistance:
()

a small angle of inclination +0 of the

porous resistance to the channel axis anda large incoming velocity head
(of the sane order of mgnitude as the pressure Mop through the porous
resistmce).

SYMBOLS

g acceleration of gravity

h head

K constant in eq. (Al) describing normal flow through a porous
resistance

.
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length of porous resistice in x-directim

~onent in eq. (Al) describing normal flow through a porous
resis~ce

total pressure

static pressure

Reynolds nmiber, 2ru/v

height of channel

meau velocity in x-direction

normal mean velocity c,cqonent
resistance

weight-flow rate

distance measured along porous

Of fluid paSS@ th.rOUgh POI’OUS

resistance in axial direction frun
upstream end

&action of the original
maining in the channel
resisbce

Isinmtic viscosity

density

shear stress at wall

x-momentum transferred to the fluld re-
by the fluid entering the porous

S@scripts:

i properties at x = O

max maximum value

min minimum value

Apparatus

. Dry air at L25 pounds per square inch gage was used. The air was
filtered and was passed through a standard ASMl?orifice run and then
through a control valve into an ~sion chamber. The expansion chaniber
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was connected to the test section by a bellmouth in an attempt to ob-
tain a uniform entering profile. The test section exhausted directly
into the room.

The pressure drop across the orifice was read on a water memometer,
and the static pressure upstreem of the orifice was measured on a Bourdon
gage.

The test section (fig. 1) consisted of a rectan@kr duct, one wall
lo

of which was a porous plate at an angle of 2+ with the flow direction.
2

One or more layers of cotton cloth could be placed on top of the porous
plate to increase the flow resistance. Figure 2 shows photographs of
the perforated plate end the cloth. Care was taken to avoid wrinkles
in the cloth layers. In order to avoid bulging of the porous plate dur-
ing an experimental run, reinforcing metal strips were set edgewise
beneath the plate and along the length of the test section.

The upper wall, which was flexible, was made of l/8-inch-thick Plexi-
glas ● It could be raised or lowered at various points by bolts (see fig.
3) which were adjustedby hand. The entering hetghtj 2 inches, compared
to the width, 16 inches} was designed to approximate a two-dimensional
model.

Instrumentation on the test section consisted of pressure taps lo-
cated as shown in figure 1 along the centerline of the upper wall. The
pressures were read on water manometers. The first tap, located before
the flexible wall, was used in determining the over-all pressure drop.

In an earlier model of the oblique-flow apparatus which had a
straight upper wallj it was possible to take velocity and static-pressure
profiles by means of a static- and total-head probe which traversed from
the upper wall to the porous plate. This probe couldbe positioned at
emy longitudinal station. Qualitative smoke studies were made in this
apparatus by introducing smoke through a pitot tube.

A vane-type anemcmneterwas available for rough-flow measurements of
the air caning out through the porous resistance.

The inclined-resistance test section couldbe repl.acedby a test
section having a resistance placed normal to the flow as shown in figure
4. Pressure drop ti velocity data taken with this test section were
needed to calculate the resistance coefficients of the porous resistance.

Passing air for a nuniberof hours through a cloth resistance set in
the normal-flow test section showed that there was no appreciable sedi-
ment in the airflow which could clog the cloth and increase its pressure
drop. The normal-flow test section was also used to check the uniformity

.
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.
of the cloth by means of pressure drop measur~nts on
of cloth. The resistance of the cloth was found to be

w

Frocedure

5

several samples
constant.

The first step in determining the wall shape which would yield a
uniform discharge through the porous resistance was to adjust the airflow
to the desired rate. Next} the screws (see fig. 3) along the sides of
the flexible wall.were adjusted until the manometers connecting the flex-
ible wall pressure taps showed that the pressure was constant inside the
channel. Since the pressure outside the resistance was also constant
(atmospheric) and the cloth resistance was uniform, the flow of air
through the resistance then had to be uniform} as was desired. Measure-
ments of the wall shape were then made by means of a depth gage.

ANALYSIS

In order to arrive at en upper wall shape which will result in uni-
form discharge through the porous wall, an analysis is performed which
makes use of the one-dimensional inccunpressiblemomentum and continuity

4 equations. The system and the control volume considered are shown in the
fol.logingsketch. Actually> in the experimental work there was an angle

● of ~ between ~ and the x-direction. For the analysis, it is more

convenient to assume them to be parallel, and the error is very small
because of the small angle.

T

Wall shape to
be solved for

The conservation of mcnnentumover the volume

?r@g dx
d(u2r) + (1 - 13)uvndx= - ~

element gives

--
P

(la)

where P is the fraction of the x-momentumof the fluid leaving the
bottm of the control volume that is transferred to the fluid left in

. the control volume and the continuity equation is

d(ur)+vnti=(l (lb)
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If Vn 3.seliminated frmu equation (h) by means of equation (lb),
result is

2TOg h . ~ @
d(u2r) -(l+ ud(ur)=-y

In dimensionless form eq.uaticms(2) and (lb) beccmej respectively,

and

‘(%)‘a ‘(:)=0

.

the

(2)

(4)

Since the resistance of the porous wall is Uniformj assuming constant
pressure within the channel is the same as assuming a uniform discharge
through the porous wall. Thus, the pressure temn in equation (3) was
set equal to zeroj and Vn in equation (4) was taken as constant. Then

v

equatim (4) can be integrated to

Vnx

u
l-~

Ti = r
~

By over-all continuity, the flow entering the channel must be
that leaving through the porous wall, and} thus, for constant

vnL = ri~

Equation (5) may now be rewritten as

1:--

$=T

s

(5)

equal to
density:

(6)

(7)

.

●

✎
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.
The constant-pressure momentum equation is, by substitution of equation
(7] into equation (3),

●

.23E& al-:
Puf ‘i ()

The Blasius resistance formula gives for the shear

(8)

stress

(9a)

where _ is the maximum velocity in the channel. The velocity u
used in this analysis) however, is the mesa velocity.

● turbulent veloci~ profile is assumed, ~ = u/O.875.

sion for ~ is substituted Into equation (9a), the

If a 1/7-power
H this eqres-

result is

.

#/4u7/4
To = 0.0288 J’

+14

It is now convenient to define a new variable y such

H equations (9b) smd (10)
Suit is

(l+p)ydy-yz

(9b)

are substituted into equation (8), the re-

()d~
ri

()

v 1/4 II J714 dy
— = 0.0576 —
r ‘i% ‘~ r
z K

This can be rewritten in the first-order linear form:

(U)

. assuming J3 is constant (see RESULTS AND DISCUSSION).
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Then equation (11) integrates to

At the beginning of the channel, Y =

(’ )(j. 1 - 0.0576 —
ri%

.ri $

1, r/ri

v @/4

Substituting this value d C into equation
equation (10) give

‘t
= 1, and, therefore,

L1.-

*

{I-2) and making use of

8

(12)

where

For given values of the parameters F, L/ri, ~d (Re)i, eqpation (13)

gives the wall shape required to yield a uliiformflow through the porous
wall.

RESULTS AND DISCUSSION

Static-Pressure and Velocity-Head Ftrofiles

Figure 5 shows representative static-pressure and velocity-head
profiles obtained at various axial stations in the ear13er model of the
oblique-flow test section. The constancy ‘& static pressure at a given
cross section, as evidenced by figwre 5(a), lends e~ertiental support
to the one-dimensional approach employed in the analysis. The velocity-
head profiles of figure 5(b) show a boundary layer formed on the upper
wall but indicate that the boundary layer has been appreciably reduced
by suction through the screen on the other side.

.
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Theoretical and Expefiental Wall Shapes

e Figure 6 shows the theoretical variation of the wall shape required
for uniform pressure with the parameter P for the case of zero wall
friction. Equation (13), with the friction term omitted, was used to ob-
tain these curves. The curves vary from the parabola r/ri = (1 - x/L)2
for 6 = 1 to the straight Line for p = O. As shown next, the effect
of frictian is often small, so that the curves presented in figure 6 can
often be used.

Figure 7 presents the curves obtained frm equation (13) for four
different values of Reynolds nmiber and for a somewhat arbitrarily picked
value of p of 0.2. The frictional effect becames smaller with increas-
ing Reynolds number. The larger channel height obtained when friction
is considered is causedby the necessity of decelerating the flow to off-
set the frictional pressure drop.

The experimentally obtained “cons&t-pressure” wall shapes are
compared with theoretical curves in figure 8. The theoretical curves
are for values of 0, 0.2, and 0.4 for j3 and for an average value of
4x105 for (Re)i. The approximate range of (Re)i in this investigation

was fra 2Xl& to 6X105. The data for the perforated pkte only as re-
sistance follow most closely along the curve for 13= 0, whereas the
data for the plate-cloth cadd.nations fall near the curve for P = 0.2.
Irregularities in the curves near the upstream end may indicate an en-
trance effect. The reason for the plate-and-two-cloth ccmibinationdata
lying somewhat above those for the @ate-and-one-cloth cmubinationat
the larger values of x/L is unknown.

During the experimental work the vane anemometer was used to con-
firm the fact that the constant-pressure wall shapes did result In uni-
form airflow through the resistance.

Apparently .theproblem of predicting the value of p from flow
geometry and parameters is still.unsolved. One of the most camplete
discussions of this subject appears in a paper by Soucek and Zelmick
(ref. 5) in connection with manifold flow. These authors concluded
from consideration of available manifold data that i3 ws either a con-
stant or a function of the ratio of the side tube flow to the main flow
at a given point in the manifold.

Mc7fown(ref. 5) claimed that p can never be more thsm 0.5.
Comtois (ref. 6) concluded froiusmoke studies of oblique flow through
screen matrices that all the tuzming takes place after the fluid has
entered the matrix. For this sit=tion a value of zero for ~ would
be obtained. Thus, in general, the values of @ found in the present
report (O to 0.2) are not contrary to information in the literature.
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It would seem possible that a p of zero rather than 0.2 was obtained
.

for the perforated p3&te because the larger openings of the plate allowed
the fluid to enter the plate before turning.
nations, however, the openings were so small
to turn before reaching them, thereby giving
tum to the fluid left in the channel.

For the plate-cloth combi- ?
that the fluid was forced
up 20 percent of its momen-

Uncorrected and Corrected Pressure Distributions
*

s
Pressure distributions are shown in figure 9(a) for a straight

upper wall for different flow rates in the representative case of the
plate-cloth resistance. These curves show a rapid increase in pressure
toward the downstream end of the channel. Physically speaking, the pres-
sure rise is caused by the transfer of momentum from the fluid leaving
through the resistance to the fluid left in the channel. The pressure
oscillation near the start of the curves in figure 9(a) may be caused by

-.

an entrance effect.

Figure 9(b) is the same type plot as figure 9(a) but is for a shaped
upper wall. The wall was shaped such that uniform pressure was obtairie-d
at an entrance velocity of 264 feet per second. The other pressue dis-
tributions were then obtained by maintaining the original wall shape and

r

lowering the flow rate to various other values. Although the pressure
tistributi.onremins substantially uniform, there is a Reynolds number
effect noticeable for the downstream tap where the pressure decreases

*

for decreasing flow rate. The wall couldbe readjusted to give uniform
pressure at the low flow rates, and, after this was done, the change in
shape was so small that it would have been negL@ible if plotted on fig-
ure 8. This experimental finttimgcan be jtitifiedbymeans of figure 7
which indicates
ation in (Re)i.

only a s~ll change in wall shape for such a small vari-

Tchl-l?ressure Drop Through Test Section

The data for total-pressure drop against flow rate for the
perforated-plate, plate-and-one-cloth, and plate-and-two-cloth resist- .
antes are shown in figures 10(a),(b), and (c), respectively. In each
case, data for both the straight upper wall and the shaped upper wall
are included. The perforated plate (fig. 10(a)) shows almost no dif-
ference in total-pressure drop for the two wall shapes, which might be
expected since the two wall shapes are almost identical. Figures 10(b)
and (c), however, show that the wall shaped for constant pressure gives
higher pressure drops than the straight upper wall in both cases. This
is probably due to the fact that the adverse pressure gradient set up
for the straight wall cases effects a higher turning efficiency.

%-

.
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The increase in total-pressure drop through the test section due to
shaping the wall as a function of the nonuniformity of the uncorrected
flow is shown in figure Il. ~ parameter of nonuniformity is taken as

/vn,~n vn,m where Vn,~ is the minimum measured normal velocity

n,& is the max&m measured normal velocity through the porousand v

resistance. A value of 1 for the abscissa represents uniform flow,
while smaller values represent nonuniform flow. The ordinate is the
ratio Or the total-pressure drop for uniform flow &s&Ped to the total-

pressure drop for the uncorrected flow APstiai@t for the same weight

flow. The data plotted in figure 2L show that the greater the nonuni-
formity of the flow, the greater the total-pressure loss suffered in
shaping the wall to make the flow uniform.

Also shown in figures 10(a) to (c) are the theoretical limiting
curves of K&hemann and Weber (ref. 7). Their estimate I assumes 100-
percent turning losses, and thus the pressure drop represented by this
curve is equal to the sum of the straight-through pressure drop through
the screen (see the appendix) and the entering velocity head parallel to
the porous resistance. Their estimate 11 represents the case of minimum
turning losses and depends upon whether the entering velocity head paral-
lel to the resistmce is less or greater than the straight-through pres-
sure drop @ the resistance. If it is less, then estimate 11 is just the
straight-through pressure drop of the resistance. E it is greater, how-
ever, UXI-percent turning efficiency would result in an over-all static-
pressure increase across the resistance, a situation considered physically
improbable. Therefore, estimate II in this case is eq=l to the entering
velocity head parallel to the resistance.

It would be expected that the present data would fall between esti-
mates I and II. For some reason, however, the data of figure 10(a) fall
slightly above estimate 1. The data of figures 10(b) and (c) are, as ex-
pected, between the two estimated curves. ~epre~ ~oke stu~es
and velocity and pressure traverses indicated no great turbulence inside
the chsnnel and, therefore, it can be concluded that the greater part of
the turning losses occurred not in the channel but inside the resistance.

SUMMARY OF RFSULTS

Analytical =d ~erimental studies were made of tur&lent airflow

through a porous resistance inclined at a small angle, 3$ , to the flow

direction. The analytical studies were made assuming incompressible uni-
form flow with an unknown parameter p, defined as the fraction of the
ortginal m~tum transferred to the fluid remaining in the channel by
the fluid entering the porous resistance. The results of these studies
are sunmarized as follows:
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1. It is possible,
where the angle between
obtain lulif03’nlflOW Out

NACA TN 4221

.
by shaping the wall of an inclined-flow apparatus
the incoming flow and porous wall is small, to
of the porous wall. b

2. The theory developed in this report can be successfully employed
to predict the approximate wall shape needed to give uniform flow out of
the porous wall if the value of @ is known.

3. Values of @ of O and 0.2 were obtained experimentally for the
perforated plate and plate-cloth resistances, respectively, for the range
of conditions studied.

4. Uniform flow through the porous wall is attained at the exyense
of increased loss of total pressure.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, December 11, 1957

●

.

.



NACA TN 4221 13

APPENDIX - STRAIGHT-THROUGH POROUS RESISTANCE

. It is customa~ to describe the pressure drop through a porous wall
by an equation of the form

Kpm
Ap=zvn (Al)

where Vn is the component of fluid velocity perpendicular to the wall
g and K and m are experimentally determined constants. For laminar
@ flow the ~onent m is equal to 1, while for turbulent flow it is ap-

promtely equal to 2. In terms of experimentally measured quantities
eqmtion (Al) can be written

~ (29.7 W)m5.2 Ah=— (A2)

Thus, the values of K and m for the three resistances used in this
work were calculated from data for Ah plotted against w, obtained
from the straight-through rig. The curves and calculated values are
shown in figure 12. The K and m values were employed in computing
the theoretical limiting 13aes of figure 10..

The values of the exponent m for the three curves were 1.90, 1.80,
and 1.94. Therefore, the flow through the resistances can be assumed tow
be turbulent.

It is interesting to note from figure 12 that the effect of adding
the second cloth (top curve) was not as great on the over-all resistance
as that of the first cloth. Thus, the resistances are not simply addi-
tive as might be assumed.

More comprehensive treatzmnts of the resistance of screens, cloths,
and perforated plates placed perpendicular to the flow can be found in
references 1, 2, and 3.

1. Baines, W. D., and Peterson, E. G.: An Investigation of Flow Z!brough
Screens. Trans. ASME, vol. 73, no. 5, July 1951, pp. 467-477; dis-
cussion, pp. 477-480.

2. Hoerner, S. F.: Pressure Losses Across Screens and Grids. AF Tech.
Rep. No. 6289, Wright Air Dev. Center, Wright-Patterscm Air Force
Base, Nov. 1950.
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3.

4.

5.

6.

7.

8.

9.

Hoerner, S. F.: Aerodynamic Properties of
Textile Res., vol. 22, no. 4, Apr. 1952,

Screens and Fabrics. Jour.
pp. 274-280.

b

Cichelli, M. T., and Boucher, D. F.: Design of Heat-Exchanger Heads
for Low Holdup. Preprint No. 58, Am. Inst. Chem. Eng., 1955.

Soucek, Edward, and Zelnick, E. W.: Lock Wnifold Experiments. Trans.
b. SOC. Civil hg.> VO~. 110, 1945, ~. 135’i’_13’7’7j 1385-1400.
(Discussionby John S. McNown, pp. 1378-1385.) *

—..-
F

Ccmtois, W. H.: Oblique Flow Losses in ~reen Matrix Heat Exchangers.
Tech. Rep. 29, Dept. Mech. Eng., Stanford Univ., June 1956. (Con-
tract N-onr-22523.) ,-

K~chemann, Dietrich, and Weber, Johanna: Aerodynamics of Bopulsion.
Ch. 12. McGraw-Hill Book Co., Inc., 1953.

Keller, J. D.: The Manifold Probla. “Jour.Appl. Mech., vol. 16,
1949, pp. 77-85.

Van Der He&e Zi~nen, B. G.: Flow Through Uniformly Tapped Pipes.
Appl. Sci. Res., vol. A-3, 1951, pp. 144-162. ●

.
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C-45857
Perforatedplate, full size.

Cloth, magnified 5 times.

Flgln?e2 - B3rf0ratidplate and cloth.
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